Features

- No External Components Except PIN Diode
- Supply-voltage Range: 2.7 V to 3.6 V
- Available for Carrier Frequencies in the Range of 30 kHz to 56 kHz ; Adjusted by Zener-diode Fusing
- Enhanced Bandpass Filter Accuracy of $\pm 1.25 \%$
- ESD: 4 kV HBM, 400 V MM
- Automatic Sensitivity Adaptation (AGC)
- Automatic Strong Signal Adaptation (ATC)
- Enhanced Immunity against Ambient Light Disturbances
- TTL and CMOS Compatible
- Suitable Minimum Burst Length ≥ 6 or 10 pulses

Applications

- Audio/Video Applications
- Home Appliances
- Remote Control Equipment

Description

The fully integrated IR receiver IC T2527 is designed to be used in all kinds of unidirectional infrared data transmission systems. It is especially optimized for carrierfrequency modulated transmission applications. Several built-in features enable best transmission quality.
The input stage has two functions: first to provide the bias voltage for the PIN diode and secondly to transform the photo current signal into a voltage for further internal processing. This is carried out by a special circuit that is optimized for low-noise applications due to the fact that the incoming current signal is as small as 700 pA . This voltage signal is amplified by a so-called Controlled Gain Amplifier (CGA) followed by a bandpass filter. The filter frequency and therefore the operating carrier frequency are defined by a narrow-tuned bandpass filter. The enhanced bandpass filter tunes the input signal very accurately with a tolerance of $\pm 1.25 \%$.
The input burst signal is demodulated and converted into a digital envelope output pulse. An integrated dynamic feedback circuit block (which varies the gain as a function of the present environmental conditions such as ambient light, modulated lamps etc.) makes sure that the signal information is evaluated and that unwanted pulses are suppressed at the output pin.
The operating supply voltage range for the T 2527 is 2.7 V to 3.6 V .

Figure 1. Block Diagram

Pad Layout
Figure 2. Pad Layout 1 (DDW Only)

Figure 3. Pad Layout 2 (DDW, SO8 or TSSOP8)

(6) $\square^{\mathrm{GND}}{ }_{\text {(5) }} \square^{\mathrm{IN}}$	
${ }^{(1)} \mathrm{vs}$	
$\square \mathrm{VS}$	
T2527	
(3) OUT	FUSING
$\square \square$	$\square \square \square$

Pin Configuration

Figure 4. Pinning SO8 and TSSOP8

Pin Description

Pin	Symbol	Function
1	VS	Supply voltage
2	n.c.	Not connected
3	OUT	Data output
4	n.c.	Not connected
5	IN	Input PIN diode
6	GND	Ground
7	n.c.	Not connected
8	n.c.	Not connected

Absolute Maximum Ratings

Parameters	Symbol	Value	Unit
Supply voltage	V_{S}	-0.3 to +4.0	V
Supply current	I_{S}	2.0	mA
Input voltage	V_{IN}	-0.3 to V_{S}	V
Input DC current at $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$	$\mathrm{I}_{\mathbb{}}$	0.4	mA
Output voltage	V_{O}	-0.3 to V_{S}	V
Output current	I_{O}	10	mA
Operating temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$
Power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{tot}}$	20	mW

Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient SO8	$\mathrm{R}_{\text {thJA }}$	130	K/W
Junction ambient TSSOP8	$\mathrm{R}_{\text {thJA }}$	TBD	K/W

Electrical Characteristics

$\mathrm{T}_{\text {amb }}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 3.6 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
1	Supply								
1.1	Supply-voltage range		1	V_{S}	2.7	3.0	3.6	V	C
1.2	Supply current	$\mathrm{I}_{\mathrm{IN}}=0$	1	I_{S}	0.7	0.9	1.2	mA	B
2	Output								
2.1	Internal pull-up resistor ${ }^{(1)}$	$\begin{aligned} & \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C} ; \\ & \text { see Figure } 12 \end{aligned}$	1,3	$\mathrm{R}_{\text {PU }}$		30/40		k Ω	A
2.2	Output voltage low	$\begin{aligned} & \mathrm{R}_{2}=2.4 \mathrm{k} \Omega ; \\ & \text { see Figure } 12 \end{aligned}$	3, 6	V_{OL}			250	mV	B
2.3	Output voltage high		3, 1	V_{OH}	$\begin{aligned} & \mathrm{V}_{\mathrm{S}^{-}} \\ & 0.25 \end{aligned}$		Vs	V	B
2.4	Output current clamping	$\mathrm{R}_{2}=0$; see Figure 12	3, 6	$\mathrm{l}_{\mathrm{OCL}}$		8		mA	B
3	Input								
3.1	Input DC current	$\mathrm{V}_{\text {IN }}=0$; see Figure 12	5	$\mathrm{I}_{\text {IN_DCMAX }}$	-150			$\mu \mathrm{A}$	C
3.2	Input DC current; see Figure 6	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 ; \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \end{aligned}$	5	$\mathrm{I}_{\text {In_DCMAX }}$		-350		$\mu \mathrm{A}$	B
3.3	Min. detection threshold current; see Figure 5	Test signal: see Figure 11 $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$,	3	$I_{\text {Eemin }}$		-700		pA	B
3.4	Min. detection threshold current with AC current disturbance IIN_AC100 $=3 \mu \mathrm{~A}$ at 100 Hz	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ $\mathrm{I}_{\mathrm{IN} \text { _DC }}=1 \mu \mathrm{~A}$; square pp, burst $\mathrm{N}=16$, $\mathrm{f}=\mathrm{f}_{0} ; \mathrm{t}_{\text {PER }}=10 \mathrm{~ms}$, Figure 10; BER = $50^{(2)}$	3	$I_{\text {Eemin }}$		-1500		pA	C
3.5	Max. detection threshold current with $\mathrm{V}_{\mathrm{IN}}>0 \mathrm{~V}$	Test signal: see Figure 11 $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C},$ $\mathrm{I}_{\mathrm{IN} \text { _DC }}=1 \mu \mathrm{~A}$; square pp, burst $\mathrm{N}=16$, $\mathrm{f}=\mathrm{f}_{0} ; \mathrm{t}_{\text {PER }}=10 \mathrm{~ms}$, figure 10; $B E R=5 \%^{(2)}$	3	$I_{\text {Eemax }}$	-200			$\mu \mathrm{A}$	D
4	Controlled Amplifier and Filter								
4.1	Maximum value of variable gain (CGA)			$\mathrm{G}_{\text {Varmax }}$		51		dB	D
4.2	Minimum value of variable gain (CGA)			$\mathrm{G}_{\text {VARmin }}$		-5		dB	D

*) Type means: $A=100 \%$ tested, $B=100 \%$ correlation tested, $C=$ Characterized on samples, $D=$ Design parameter
Notes: 1. Depending on version, see "Ordering Information".
2. $B E R=$ bit error rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input Pin 19 to Pin 21 pulses can appear at the Pin OUT.
3. After transformation of input current into voltage.

Electrical Characteristics (Continued)

$\mathrm{T}_{\text {amb }}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$ to 3.6 V unless otherwise specified.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Typ.	Max.	Unit	Type*
4.3	Total internal amplification ${ }^{(3)}$			$\mathrm{G}_{\text {MAX }}$		71		dB	D
4.4	Center frequency fusing accuracy of bandpass	$\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		$\mathrm{f}_{03 \mathrm{~V} \text { _FUSE }}$	-1.25	f_{0}	+1.25	\%	A
4.5	Overall accuracy center frequency of bandpass	See Figure 7		$\mathrm{f}_{03 \mathrm{~V}}$	-3.5	f_{0}	+2.0	\%	C
4.6	BPF bandwidth	$-3 \mathrm{~dB} ; \mathrm{f}_{0}=38 \mathrm{kHz} ;$ see Figure 9		B		3.8		kHz	C

${ }^{*}$) Type means: $\mathrm{A}=100 \%$ tested, $\mathrm{B}=100 \%$ correlation tested, $\mathrm{C}=$ Characterized on samples, D = Design parameter
Notes: 1. Depending on version, see "Ordering Information".
2. $B E R=$ bit error rate; e.g., $B E R=5 \%$ means that with $P=20$ at the input Pin 19 to Pin 21 pulses can appear at the Pin OUT.
3. After transformation of input current into voltage.

Typical Electrical Curves at $T_{a m b}=25^{\circ} \mathrm{C}$

Figure 5. $\mathrm{I}_{\text {Eemin }}$ versus $\mathrm{I}_{\mathrm{IN} \text { _DC }}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

Figure 6. V_{IN} versus $\mathrm{I}_{\mathrm{IN} _\mathrm{DC}}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

Figure 7. Overall Tolerance of Bandpass Inclusive Fusing

Figure 8. Data Transmission Rate, $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$

Figure 9. Typical Bandpass Curve

$\mathrm{f}_{1}=0.96(\mathrm{at}-3 \mathrm{~dB})$
$f_{2}=f / f_{0}$
$\mathrm{f}_{3}=1.047$ (at -3 dB)
$B=$ bandwidth $(-3 \mathrm{~dB})$
$Q=f_{2} / B$
Example: $\quad Q=1 /(1.047-0.960)=11.5$

Figure 10. Illustration of Used Terms
Example: $f=30 \mathrm{kHz}$, burst with 16 pulses, 16 periods

Figure 11. Test Circuit

Figure 12. Application Circuit

Chip Dimensions

Figure 13. Chip Size in $\mu \mathrm{m}^{(1)}$

Note: 1. Pad coordinates are given for lower left corner of the pad in $\mu \mathrm{m}$ from the origin 0,0

Length incl. scribe	1.16 mm	
Didth incl. scribe	1.37 mm	
	Thickness	$290 \mu \pm 5 \%$
Pads	$90 \mu \times 90 \mu$	
Fusing pads	$70 \mu \times 70 \mu$	
Pad metallurgy	AISiTi	
Finish		
	$\mathrm{Si}_{3} \mathrm{~N}_{4}$ thickness $1.05 \mu \mathrm{~m}$	

$\mathrm{Si}_{3} \mathrm{~N}_{4}$ thickness $1.05 \mu \mathrm{~m}$

Ordering Information

Delivery: unsawn wafers (DDW) in box, SO8 (150 mil) and TSSOP8 (3 mm body).

Extended Type Number	$\boldsymbol{P L}^{(2)}$	$\boldsymbol{R}_{\boldsymbol{P U}}{ }^{(3)}$	$\boldsymbol{D}^{(4)}$	Type
T2527N0xx ${ }^{(1)}$-yyy ${ }^{(5)}$	2	30	2000	Standard type: ≥ 10 pulses, enhanced sensibility, high data rate
T2527N1xx ${ }^{(1)}$-DDW	1	30	2000	
T2527N2xx ${ }^{(1)}$-yyy ${ }^{(5)}$	2	40	1333	Lamp $\boldsymbol{t y p e}: \geq 10$ pulses, enhanced suppression of disturbances, secure data transmission
T2527N3xx ${ }^{(1)}$-DDW	1	40	1333	
T2527N6xx ${ }^{(1)}$-yyy ${ }^{(5)}$	2	30	3060	Short burst type: ≥ 6 pulses, enhanced data rate
T2527N7xx ${ }^{(1)}$-DDW	1	30	3060	

Note: 1. xx means the used carrier frequency value $\mathrm{f}_{0} 30,33,36,38,40,44 \mathrm{or} 56 \mathrm{kHz}$ (76 kHz type on request).
2. Two pad layout versions (see Figure 2 and Figure 3) available for different assembly demand.
3. Integrated pull-up resistor at PIN OUT (see electrical characteristics).
4. Typical data transmission rate up to bit/s with $\mathrm{f}_{0}=56 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ (see Figure 8).
5. yyy means kind of packaging: DDW -> unsawn wafers in box.
...........................DDW -> unsawn wafers in box
.6AQ -> (only on request, TSSOP8 taped and reeled)

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
e-mail
literature@atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Atmel ${ }^{\circledR}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

